MOMC Regional Mathematical Olympiad Mock Orange 1

Time: 3 Hours
October 22, 2023
Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.
- Problems collected by Agamjeet Singh

1. Show that the number x is rational if and only if three distinct terms that form a geometric progression can be chosen from the sequence

$$
x, x+1, x+2, x+3, \ldots
$$

2. Given positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{1}^{2}+2 a_{2}^{3}+\cdots+n a_{n}^{n+1}<1$. Prove that $2 a_{1}+3 a_{2}^{2}+\cdots+(n+1) a_{n}^{n}<3$.
3. Let $A B C D$ be a convex quadrilateral such that $\angle A B C=\angle B C D=\theta$ for some angle $\theta<90^{\circ}$. Point X lies inside the quadrilateral such that $\angle X A D=\angle X D A=90^{\circ}-\theta$. Prove that $B X=X C$.
4. Let $-1<x_{1}<x_{2}, \cdots<x_{n}<1$ and $x_{1}^{13}+x_{2}^{13}+\cdots+x_{n}^{13}=x_{1}+x_{2}+\cdots+x_{n}$. Prove that if $y_{1}<y_{2}<\cdots<y_{n}$, then

$$
x_{1}^{13} y_{1}+\cdots+x_{n}^{13} y_{n}<x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

5. Let $A B C$ be a triangle. Point D lies on segment $B C$ such that $\angle B A D=\angle D A C$. Point X lies on the opposite side of line $B C$ as A and satisfies $X B=X D$ and $\angle B X D=\angle A C B$. Analogously, point Y lies on the opposite side of line $B C$ as A and satisfies $Y C=Y D$ and $\angle C Y D=\angle A B C$. Prove that lines $X Y$ and $A D$ are perpendicular.
6. Let $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ be a permutation of $\{1,2,3 \cdots, n\}$. Prove that the sum

$$
\sum \frac{1}{\left(a_{1}\right)\left(a_{1}+a_{2}\right)\left(a_{1}+a_{2}+a_{3}\right) \ldots\left(a_{1}+a_{2}+\cdots+a_{n}\right)}
$$

taken over all permutations equals $\frac{1}{n!}$.

