MOMC Regional Mathematical Olympiad Mock Orange 2

Time: 3 Hours
October 24, 2023

Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.
- Problems collected by Agamjeet Singh

1. Let $a_{1}, a_{2}, a_{3}, \ldots$ be the sequence of real numbers defined by $a_{1}=1$ and

$$
a_{m}=\frac{1}{a_{1}^{2}+a_{2}^{2}+\ldots+a_{m-1}^{2}} \quad \text { for } m \geq 2
$$

Determine whether there exists a positive integer N such that

$$
a_{1}+a_{2}+\ldots+a_{N}>2023^{2023}
$$

2. In $\triangle A B C, \angle B A C=60^{\circ}$, point D lies on side $B C, O_{1}$ and O_{2} are the centers of the circumcircles of $\triangle A B D$ and $\triangle A C D$, respectively. Lines $B O_{1}$ and $C O_{2}$ intersect at point P. If I is the incenter of $\triangle A B C$ and H is the orthocenter of $\triangle P B C$, then prove that the four points B, C, I, H are on the same circle.
3. Let Q be a set of permutations of $1,2, \ldots, 100$ such that for all $1 \leq a, b \leq 100, a$ can be found to the left of b and adjacent to b in at most one permutation in Q. Find the largest possible number of elements in Q.
4. The function $f: R \rightarrow R$ is defined as $f(x)=\left\lfloor x^{2}\right\rfloor+\{x\}$. Call a real number regional if it doesn't lie in the range of f. Show that there exists an infinite arithmetic progression of distinct regional positive rational numbers, which all have denominator 3 when written in lowest form.
5. Find all integers n such that there exists a concave pentagon which can be dissected into n congruent triangles.
6. Let a, b, c be positive real numbers such that $a b+b c+c a=1$. Prove that

$$
\sqrt[4]{\frac{\sqrt{3}}{a}+6 \sqrt{3} b}+\sqrt[4]{\frac{\sqrt{3}}{b}+6 \sqrt{3} c}+\sqrt[4]{\frac{\sqrt{3}}{c}+6 \sqrt{3} a} \leq \frac{1}{a b c}
$$

