MOMC Regional Mathematical Olympiad Mock Orange 3

Time: 3 Hours
October 26, 2023 Instructions:

- Calculators (in any form) and protractors are not allowed.
- Rulers and compasses are allowed.
- Answer all the questions.
- All questions carry equal marks. Maximum marks: 102.
- Answer to each question should start on a new page. Clearly indicate the question number.
- Problems collected by Agamjeet Singh

1. Let $A B C$ be a triangle of which the side lengths are positive integers which are pairwise coprime. The tangent in A to the circumcircle intersects line $B C$ in D. Prove that $B D$ is not an integer.
2. Prove that there doesn't exist any positive integer n such that $2 n^{2}+1,3 n^{2}+1$ and $6 n^{2}+1$ are perfect squares.
3. Find all monic polynomials $P(x)=x^{2023}+a_{2022} x^{2022}+\ldots+a_{1} x+a_{0}$ with real coefficients such that $a_{2022}=0, P(1)=1$ and all roots of P are real and less than 1 .
4. Let $0<a, b, c<1$ with $a b+b c+c a=1$. Prove that

$$
\frac{a}{1-a^{2}}+\frac{b}{1-b^{2}}+\frac{c}{1-c^{2}} \geq \frac{3 \sqrt{3}}{2} .
$$

Determine when equality holds.
5. Two circles Γ_{1} and Γ_{2} intersect at points A and Z (with $A \neq Z$). Let B be the centre of Γ_{1} and let C be the centre of Γ_{2}. The exterior angle bisector of $\angle B A C$ intersects Γ_{1} again at X and Γ_{2} again at Y. Prove that the interior angle bisector of $\angle B Z C$ passes through the circumcenter of $\triangle X Y Z$.
6. Find all positive integers m and n that satisfy the equality:

$$
\begin{gathered}
n^{5}+n^{4}=7^{m}-1 \\
-0
\end{gathered}
$$

